A dynamic field approach to goal inference and error monitoring for human-robot interaction
نویسندگان
چکیده
In this paper we present results of our ongoing research on non-verbal human-robot interaction that is heavily inspired by recent experimental findings about the neuro-cognitive mechanisms supporting joint action in humans. The robot control architecture implements the joint coordination of actions and goals as a dynamic process that integrates contextual cues, shared task knowledge and the predicted outcome of the user’s motor behavior. The architecture is formalized by a coupled system of dynamic neural fields representing a distributed network of local but connected neural populations with specific functionalities. We validate the approach in a task in which a robot and a human user jointly construct a toy ’vehicle’. We show that the context-dependent mapping from action observation onto appropriate complementary actions allows the robot to cope with dynamically changing joint action situations. This includes a basic form of error monitoring and compensation.
منابع مشابه
Kinematic and Dynamic Analysis of Tripteron, an Over-constrained 3-DOF Translational Parallel Manipulator, Through Newton-Euler Approach
In this research, as the main contribution, a comprehensive study is carried out on the mathematical modeling and analysis of the inverse kinematics and dynamics of an over-constraint three translational degree-of-freedom parallel manipulator. Due to the inconsistency between the number of equations and unknowns, the problem of obtaining the constraint forces and torques of an over-constraint m...
متن کاملEffect of Target Impedance Selection on the Lower Extremity Assistive Exoskeleton Performance
Exoskeletons are utilized extensively in robotic rehabilitation and power augmentation purposes. One of the most recognised control algorithms utilized in this field is the impedance controller. Impedance control approach provides the capability of realizing different rehabilitation exercises by tuning the target impedance gains. Trial and error experimental approach is one of the most common m...
متن کاملNavigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملOptimizing the Torque of Knee Movements of a Rehabilitation Robot
The aim of this study is to employ the novel Adaptive Network-based Fuzzy Inference System to optimize the torque applied on the knee link of a rehabilitation robot. Given the special conditions of stroke or spinal cord injury patients, devices with minimum error are required for performing the rehabilitation exercises. After examining the anthropometric data tables of human body, parameters su...
متن کاملInvestigation on the Effect of Different Parameters in Wheeled Mobile Robot Error (TECHNICAL NOTE)
This article has focused on evaluation and identification of effective parameters in positioning performance with an odometry approach of an omni-directional mobile robot. Although there has been research in this field, but in this paper, a new approach has been proposed for mobile robot in positioning performance. With respect to experimental investigations of different parameters in omni-dire...
متن کامل